

Table of contents

1 Why is React Flow prone to performance issues?

#1. <ReactFlow> component optimization

#2. Dependencies on Node and Edge Arrays

#3. Custom nodes and edges templates

 Why use React.memo?

 “Heavy” nodes

#4. Access to Zustand stor

 Memoization with useShallow

 Function createWithEqualityFn

#5. UI component

 Zustand store dependency

 <ReactFlow> child components

#6. Application’s architectur

 Presentational and Container Components pattern

 I. Presentational components

 II. Container component

 Application’s state

Bonus: How to do debugging

 Performance analysis

 Identifying bottlenecks

03

04

06

11

11

13

15

15

16

17

17

18

19

19

20

20

20

21

21

23

2

3

4

5

6

7

8

Why is React Flow prone to
performance issues?

React Flow is a library vulnerable to a diagram’s performance pitfalls.
Especially when a developer isn't cautious while coding.

Even one non-optimized line of code can cause unnecessary re-rendering  
of the diagram's elements on every state change (mainly when the positions
of nodes are updated). As a result, an application works slowly.

To understand how easily performance issues can arise, let’s analyze  
the following example. When you drag a node on the diagram, the application
acts as follows
 Every node's position change causes node to re-render.
 A node's state change causes a refresh of ReactFlow's internal state.
 ReactFlow's internal state refreshing leads to the <ReactFlow>

component refreshing, which relies, among other things, on the nodes
array. Consequently, any changes to a node or other diagram element
cause the re-rendering of this main component.

Re-rendering of a single component usually doesn't impact an application's
performance.

However, if we unintentionally make the states of nodes dependent on each
other or place heavy components as children within the main ReactFlow
component, the application may lose its smoothness and fail to meet
performance requirements.

In addition, there is a general rule in the React ecosystem not to optimize
code too early unless there are performance issues.

As for React Flow, if such issues occur later in a development process, they
can be difficult to overcome without significant changes in code logic.

3

So, the sooner you work on software performance optimization, the better.

Now, I will share six hints on avoiding performance pitfalls in React Flow
applications.

The data I present in this article comes from a project consisting of 100
nodes. Every node had two Handles and rendered one of two things:

 In default mode, one text input from MaterialUI.
 In "heavy" mode, one DataGrid from MaterialUI that had nine rows  

and five columns.

The base FPS (frames per second) with optimal performance in the project
on my computer is 60 FPS.

#1.<ReactFlow> component
optimization

The basic usage of the <ReactFlow> component is as follows:

4

The React Flow library's documentation strongly recommends passing
memoized references to this component, whether the props are functions  
or objects. To ensure optimal performance, follow these two rules:

 Objects memoization: Objects passed to the <ReactFlow> component

should be memoized using useMemo or defined outside of the
component.

 Functions memoization: All functions passed as props should  
be memoized using useCallback.

Additionally, memoized objects and functions must have stable
dependencies to ensure consistent behavior.

If you include elements with frequently changing references (e.g., functions
not wrapped in useCallback) in the dependencyArray of useMemo  
or useCallback, the memoization will not yield the expected results.

Benchmark

Let’s consider the following code modification that illustrates this issue:

Introducing an anonymous function to onNodeClick prop forces React  
to assign a new reference in every render.

5

The results (number of FPS) for dragging operation:

100

default nodes

Decrease to

10 FPS
100

"heavy" nodes

Decrease to

2 FPS

The cause

This change caused the re-render of all the diagram's nodes whenever  
a node's state was updated. It means that with every dragging operation,  
not only the main <ReactFlow> component and dragged node are being  
re-rendered but also 99 nodes remaining.

The conclusion

You must remember to properly memoize props, i.e., using useCallback  
and useMemo, when working with <ReactFlow> component.

#2. Dependencies on Node  
and Edge Arrays

Uncontrolled dependencies of components and hooks on node and edge
arrays are among the main threats to the performance of applications using
ReactFlow.

6

The state of nodes and edges can change even with minor updates  
to individual properties of any diagram element. This often results in
unnecessary re-renders of components dependent on this state.

The example

Let's assume that you want to display selected nodes' IDs. A quick but not
optimal way is:

We fetch the complete node array from the store, filter the selected objects,
and display their IDs inside the nodes.

The results (number of FPS) for dragging operation:

100

default nodes

Decrease to

12 FPS
100

"heavy" nodes

Decrease to

2 FPS

7

The cause

The main issue arises from the behavior of the useStore hook: the
selectedNodes reference changes with every update of state.nodes (e.g.,
during every tick of a dragging operation). As a result, all nodes on the
diagram defined by this component will re-render with every state update,
regardless of whether they are being dragged or not.

The solution

To avoid unnecessary rendering, you can define a field in store where you
can keep selected objects. Thanks to that a Node component won’t be
directly dependent on nodes array.

8

In this approach, the selectedNodes variable is refreshed if and only if the
selection actually changes, avoiding unnecessary re-renders of the
components that depend on it.

An alternative approach

When we want to extract an array of primitive types from a collection  
of nodes or edges, as shown in the example above, there is also  
a straightforward solution that uses shallow comparison provided  
by Zustand.

Zustand offers methods for memoizing selectors either by using the
useShallow hook or by creating a store with createWithEqualityFn and
passing the shallow parameter. In this example, we use a solution based  
on store configuration with createWithEqualityFn (see more in Zustand
chapter).

9

Thanks to this approach, the array of primitive types is memoized. Even if its
reference changes, the selector will still return the previous reference as long
as none of the elements in the array have changed.

The conclusions

Using state from the ReactFlow store in components should be carefully
considered, especially when there are dependencies on dynamically
changing arrays of nodes or edges.

It's easy to notice issues with suboptimal state usage in a custom node
component. However, similar issues can also arise in other scenarios:

 "Heavy" UI component's dependency on nodes and edges array: Let's
take an example. Suppose you have a sidebar with MaterialUI forms that
depend on the nodes array. In that case, this sidebar will render every
time any diagram's object changes, decreasing performance.

 Hook dependency on nodes and edges array: For instance, a hook that

depends on the nodes array and whose returned value is included in the
dependencyArray of a function passed to <ReactFlow>. In this scenario,
simply using useCallback won't solve the issue because the hook still
changes its reference based on dynamically changing data. As a result,
the returned values will be updated just as frequently.

10

#3. Custom nodes and edges
templates

One of the most effective ways for keeping a ReactFlow app’s performance  
is wrapping custom nodes and edges in React.memo.

Why use React.memo?

Thanks to wrapping nodes and edges in a React.memo component, even  
if listeners on the main ReactFlow component are not used optimally, smaller
diagrams are unlikely to experience significant performance issues. This  
is because the contents of nodes and edges won't re-render during i.e.
dragging operation.

Benchmark

Let's test how wrapping in memo impacts performance. To do that, let's
restore an anonymous function in the main <ReactFlow> component:

11

And let’s wrap Node component in React.memo:

The results (number of FPS) for dragging operation:

100

default nodes

In the first second  
of operation, the
number decrease to

50 FPS

then becomes
stable at

60 FPS

100

"heavy" nodes

Decrease to

30 FPS

When compared to the first chapter's test's result without using memo
(decrease to 10 FPS for default nodes and to 2 FPS for "heavy" nodes),  
it is clearly visible that wrapping components in memo significantly improves
performance.

It is worth noting that I conducted these tests with developer tools turned off
in my browser. These tools can slow down an application and negatively
impact the FPS count.

12

The conclusions

Every custom template should be wrapped in a React.memo, which
significantly decreases the burden during operations such as dragging.

“Heavy” nodes

Tests prove that “heavy” nodes (those with more complex components, such
as DataGrid from MaterialUI) have a bigger impact on a diagram’s
performance.

Having implemented all above-mentioned optimization,

the results (number of FPS) for dragging operation:

100

"heavy" nodes

Decrease to

35-40 FPS

The solution

To minimize the impact that Node’s contents have on performance, you can
wrap the inside elements in React.memo component. Thanks to that, their
rendering will be limited only to these cases, when their props will actually
change.

13

The results (number of FPS) for dragging operation:

100

default nodes

In the first second  
of operation, the number
decreases to

35-40 FPS

then becomes stable at

60 FPS

The conclusions

If a node has heavy content, such as DataGrid from MaterialUI, the content
should be wrapped in React.memo. This will avoid unnecessary re-rendering
of its contents during state’s updates.

14

#4. Access to Zustand store

Zustand is a small, fast and flexible state management library for React
applications, used internally by ReactFlow.

While getting data from the Zustand store, a natural approach would be
writing such a code:

Although this code seems intuitive, without a proper store configuration,  
it can lead to performance issues and, in some cases, errors such as
Maximum update depth exceeded.

This happens because the array returned by useStore is recreated from
scratch every time the state changes. Since the resulting array has  
a different reference on each update, it causes component to re-render even  
if individual values within the array remain unchanged. A similar situation
occurs if an object is returned instead of an array—every state change
generates a new reference to the object.

Memoization with useShallow

Zustand provides the useShallow hook, which memoizes the returned
reference if the contents of an array or object have not changed, helping
reduce unnecessary re-renders.

15

The drawback of this method is that useShallow requires remembering to use
it every time you get more than one field from the store.

Function createWithEqualityFn

The alternative method is to create a store using the function
createWithEquityFn (from “Zustand/traditional” package) with a shallow
parameter. As a result, every selector uses memoization with shallow
comparison by default.

Thanks to that, you can use the original approach to useStore hooks.

16

#5. UI components

Regular React components, apart from diagram objects, can also negatively
impact performance if they are not properly optimized.

In such cases, you should follow the hint I explained in the previous chapter
and a chapter dedicated to dependencies on node and edge arrays.

Zustand store dependency

Let’s look at a sidebar with a form that displays IDs of selected nodes.

In this example, a Sidebar will re-render every time there’s a change in the
nodes array. For instance, at every dragging operation, because
selectedNodes reference changes at every state.nodes update.

You can optimize this component using methods from previous chapters  
of this article. Assuming that the store was created with
createWithEqualityFn with shallow parameter, you can memoize selectors'
results.

17

Zustand memoizes the selector's result, and selectedNodeIds will change  
its reference only if the selection actually changes, which Zustand's shallow
comparison will detect.

Previous selector result wasn't memoized because it extracted nodes'
references from the state, which changes much more often than selected
IDs.

<ReactFlow> child components

Nested components placed as children of the main <ReactFlow> component
will be automatically re-rendered with every state change in the diagram
because <ReactFlow> itself re-renders that often. To prevent this, they
should be wrapped in React.memo.

18

19

#6. Application’s architecture

Let’s focus on what you should consider for your application’s architecture  
to avoid some of the performance issues while working with React Flow and
to make it easier to identify potential performance bottlenecks.

Presentational and Container  
Components pattern

This pattern helps to isolate performance issues and makes them easier  
to identify.

20

Presentational components: Container components:

They are responsible only for

displaying data passed by props.

If they have a state, it is only local

and independent from the global

application’s state.

They are light and easy to unit

test.

Have access to an app's state

(e.g., to Zustand store).

Define business logic and

interactions (e.g., data

processing, functions calls,

communication with backend).

Use hooks.

Pass data and functions as props

to presentational components.

By the above definition, performance issues are most often found in
Container Components, which means you usually don’t need to review
Presentational Components when looking for the source of the problem.

Application’s state

In ReactFlow applications, due to the high volatility of nodes' and edges'
states, I recommend avoiding storing the diagram state in useState,
useReducer, or the Context API. Instead, it’s best to move the state  
to a Zustand store.

Zustand allows precise subscription to selected parts of the state  
and performance optimization through selector memoization.

I want to know how many days off

do I have left

No problem , you still have 12

days off left this year

chat validation panel

Hi Chatbot

Hi Joan
B

B

JD

HomeApplication Server

HTTPS

HTTPS

HTTPS

HTTPS

HTTPS

login

account

home

product

checkout

bar chartInternal resistance

Forward voltage

SAVE

Gs

Ron

Vf

0.2

1e-3
Ω

0

V

Bonus: How to do debugging?

You already know some hints on how to impact React Flow apps'
performance. Now, let’s see how to check if your app has any performance
issues.

Performance analysis

I usually use React Developer Tools—React, especially the Profiler module,  
to analyze an app's performance. You can find it (after installation) in your
browser in Developer Tools.

My workflow of analyzing with Profiler looks as follows:
 Start an application and add several dozen nodes on a diagram (e.g., 30).
 Turn on recording in Profiler.

21

https://react.dev/learn/react-developer-tools

 Choose one node and drag it for a few seconds.
 Stop the recording in Profiler.

 Go to the Flamegraph section.

How to interpret results on Flamegraph:

 Dark-grey elements are components that haven’t been rendered.
 Vertical, narrowing down “teeth” under the NodeRenederer group

represent node components. If you hover over any node, it highlights  
it in an application, making it easy to identify.

 An optimized application will highlight only one node on a graph (the
dragged one), while a not optimized one will display many elements in the
same frame. You can change frames in Profiler’s right upper corner—on  
a colorful bar chart.

22

Below, you can see a Flamegraph of an application that wasn’t optimized.  
In a rendering frame, you can observe many more highlighted nodes. This
means that while one of them was dragged, the rest also re-rendered.

In a similar way, you can look for not optimized UI components.

The main goal is to have a case in which, while moving only one element,  
only this element and its edges are re-rendered (unless business
requirements dictate different behavior).

Identifying bottlenecks

There’s no one perfect way to identify bottlenecks, but my approach is as follows:

 Analyzing communication with a store.

 a. Check if selectors are memoized and if a state is effectively managed  
 (e.g., with a Zustand).
 Analyzing references passed to <ReactFlow>.

 a. Make sure that you use useCallback and useMemo and check their  
 dependencies in dependencyArray
 Nodes and edges memoization.

 a. Check if nodes and edges are wrapped in React.memo.

23

 In less complex projects: Review of using state in application.

 a. Check manually all state usage according to good practices.
 In complex projects:

 a. Perform a binary search for <ReactFlow>.

 I. Comment out half of the props passed to <ReactFlow> and check  
 if it improved performance.

 II. If so, uncomment half of the props and search further.

 III. If not, comment out half of the remaining props and search further.

 b. Nodes and edges contents:

 I. Comment out their contents to check if the source of performance  
 issue lies in rendered elements’ complexity.

 II. Use binary search, as I mentioned above.

 III. Check the usage of 3rd party libraries in components.

 c. The application’s main panels:

 I. Comment out everything besides a diagram (and eventually search  
 for an issue with a binary search).

Sometimes, a bottleneck hides in one place, and one of the above points will
help. However, there might be also several bottlenecks and then you have  
to combine some of those techniques.

Want to discuss how to optimize your React Flow

project? Reach out to me on LinkedIn.

Łukasz Jaźwa
CTO at Synergy Codes

Contact me

24

	01
	React Flow-nocovers_compressed
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

	25

