

Table of contents

1 Introduction

Multi-user real-time collaboration: What is it, and why does it matter?

Available options for multi-user real-time collaboration

Yjs, a solution for multi-user real-time collaboration

How to set up a React app with Yjs

How to set up a React Flow app with Yjs

The architectural challenges

of multi-user real-time collaboration apps

Communication model of Yjs

Scaling Yjs WebSocket servers

Organizing and persisting data in Yjs

Thinking in Yjs vs. client-server thinking

Conflict resolution in Yjs CRDT

Yjs integration into an existing system

Multi-document approach

Using Yjs with front-end frameworks

Summary: Considering everything—is Yjs even right for me?

It’s a wrap!

03

04

05

06

07

17

22

23

28

35

40

43

47

48

51

54

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

8

Introduction

Adding multi-user real-time collaboration to React Flow diagrams sounds  
like a great feature. It's complex, not so straightforward, but entirely possible.
The real question is—how do we make it work? How to implement it into  
your software project seamlessly? Are there off-the-shelf solutions, or will  
we need to build from scratch? And what exactly do we need?

Multi-user real-time collaboration is a full-stack topic. It isn’t just about the
front-end. For a smooth collaborative diagramming experience, we need  
to look at things from all angles—front-end (React, React Flow), back-end,
and even the underlying architecture. In this post, we’ll explore the options,
the challenges, and how to overcome them.

3

Multi-user real-time collaboration:
What is it, and why does it matter?

When building rich client applications, sooner or later we must face the topic
of concurrency. Users will need to share resources, view each other’s
content, and sometimes even edit it—sounds like standard app behavior,
right? However, it adds complexity. Allowing multi-user editing of the same
document at the same time can lead to conflicts. While simple solutions like
read-only modes or check-in/check-out mechanisms can help, they aren’t
exactly the smooth, collaborative experiences users expect today. With  
apps like Google Docs or Miro setting the bar for real-time collaboration,  
multi-user editing is demanded wherever you look—with changes reflected
live, seamlessly, and without friction.

This is where multi-user real-time collaboration comes in: it’s about
techniques that allow multiple users to interact with the same document  
in real time, avoiding any possible conflicts. No matter if we’re dealing  
with a drawing canvas or a text document, the fundamental techniques  
for introducing multi-user editing are the same, but they’re different from  
the typical client-server model. Sounds confusing? I know.  
But don’t worry—we’ll break it all down for you.

A quick note: While this article focuses on React Flow, as collaborative
diagramming and data visualization are

 the insights we discuss here are broadly applicable  
to all types of multi-user real-time collaboration apps. That said,
diagramming introduces unique challenges not typically found  
in text-based applications, and text editors come with their own set  
of issues.

our main areas of expertise  
at Synergy Codes,

4

https://www.synergycodes.com/react-flow
https://www.synergycodes.com/react-flow

Available options for multi-user
real-time collaboration

When it comes to adding multi-user real-time collaboration, you have  
the following options to consider

 Writing your own custom solutio
 Using libraries for multi-user real-time collaboratio
 Leveraging services for live synchronization

Building a custom solution might be tempting for developers who love a good
challenge, but I’d strongly advise against it. The complexities of multi-user
real-time collaboration are often underestimated. Without a solid
understanding of concurrent and distributed systems, you’re likely to run 
into issues that are already well-understood and easily solved by existing
solutions.

So, we're left with two options for adding multi-user real-time collaboration
into your software.

Libraries are the most flexible solution since they can be integrated into
almost any project. Most of them are implementations of CRDT (Conflict-free
Replicated Data Type), which is a data structure designed specifically  
for distributed data systems and multi-user real-time collaboration. If you're
really curious about CRDTs, there's a wealth of research on the topic, and  
the website is a great place to start.

What libraries are available? Some of the more well-known ones include
. Keep in mind, though, that not all libraries

will include communication protocols out of the box—they may just focus  
on conflict resolution through CRDTs. Before using them, dig into the
documentation and read this article until the end.

CRDT.tech

 Yjs,
Loro, Automerge, Logux, TinyBase

5

https://crdt.tech/
https://yjs.dev/
https://loro.dev/
https://automerge.org/
https://logux.org/
https://tinybase.org/

On the other hand, services might come with more limitations, but using
them is more straightforward. Some of them may even be easily integrated
into your existing tech stack. Just to name a few:

. Even if you decide to use a cloud service,  
it’s still worth reading through this article—since you may run into
development and architectural issues that we describe here. Plus, some
services actually rely on the same libraries mentioned earlier,  
so understanding the underlying technologies can still be helpful.

 Liveblocks, Superviz,
Electric, Supabase Realtime

Yjs, a solution for multi-user  
real-time collaboration

At Synergy Codes, we strongly recommend Yjs for multi-user real-time
collaboration. It’s a free, open-source, MIT-licensed JavaScript library
implementing Yjs CRDT that can be used both on the client and server side.

One of the key advantages of Yjs is its flexibility—it doesn’t restrict you  
to specific use cases, giving you the freedom to adapt it to various projects.
This flexibility ensures that Yjs can be used in everything from multi-user text
editing to complex collaborative diagramming. Yjs is also lightweight, battle-
tested, and ready for production use. Additionally, Yjs awareness allows real-
time updates on who is currently interacting with your project. At Synergy
Codes, we’ve successfully developed multi-user real-time collaboration apps
with Yjs from scratch, as well as integrated it seamlessly into existing apps.

If you’re curious about our Yjs expertise or want to try it out yourself,

While this article will now focus on using Yjs, the concepts and challenges
we’ll discuss are present in other CRDT implementations, or even more
broadly, in other multi-user real-time collaboration apps.
 

check
out our demo app.

6

https://liveblocks.io/
https://superviz.com/
https://electric-sql.com/
https://supabase.com/realtime
https://www.synergycodes.com/yjs
https://www.synergycodes.com/yjs

How to set up a React app with Yjs

Before diving deep into how Yjs works and how to integrate it with your app,
let’s start with a hands-on example. We’ll build a simple React app using Yjs
for state management to enable multi-user real-time collaboration. Once we
get the basics down, we’ll transition to React Flow, but let’s first lay the
foundation with something straightforward using multi-user real-time
collaboration principles.

Initial app without multi-user real-time collaboration

I won’t walk you through the process of setting up a React project—you’re
free to use whatever method you prefer (but I’d recommend steering clear  
of Create React App, since it’s deprecated). For this example,

The key file here is , as it contains the whole app's logic. By
taking a look at the code, you’ll notice the state is made up of three variables:

 • – to-do items kept as a map:
 • – map defining the order of items:
 • – points to the item that is being edited at the  
 moment: keeps id or . Used to display the editor for the proper entry.

Using a map for to-do items and defining order separately may seem
unconventional for a typical to-do app, where items are often stored

in arrays. However, this structure will make it much easier to adapt the code
for Yjs, and it mirrors the kind of setup you might encounter in real use cases,
such as collaborative diagramming apps.

The rest of the code isn’t crucial to this tutorial, as we’ll be focusing primarily
on enabling multi-user real-time collaboration by modifying the app’s logic.
 

 I’ve built a very
simple to-do list app.

use-todo.ts

todoItems id -> TodoItem data.

order id -> order.

currentEditedItem

null

7

https://github.com/synergycodes/yjs-example-react-todo-app/tree/initial-app
https://github.com/synergycodes/yjs-example-react-todo-app/tree/initial-app

Adding Yjs to the app

Prerequisites

Before we integrate Yjs into our app, we need to install two packages:

 • – The core Yjs package that provides collaborative state management.

 • – A library that adds WebSocket connectivity for Yjs. It also 
 comes with a simple Yjs WebSocket server that we’ll use.

Once the packages are installed, let's add a new entry to

for running a local Yjs WebSocket server with persisting data on a disk:

yjs
y-websocket

package.json

Now that we’ve added the Yjs WebSocket server, we can start it and let it run
in the background with:

Yjs front-end setup

Now, let's revisit the file. We need to start with two steps
 Initialize state management with Yjs
 Initialize Yjs WebSocket connection.

Unlike state management libraries like Redux, that keep everything in a
, Yjs keeps its data in a document, initialized using

npm run ws-server.

use-todo.ts

store new Y.Doc().
 

8

Y.Doc
slices

Y.Map

Y.Array
Y.Text
Y.XmlFragment, Y.XmlElement, Y.XmlText

Y.Map
Y.Doc doc.getMap()

todoItems order currentEditedItem

 itself can store only special data structures called shared data types.
While they might remind you of Redux , they work differently. These
data structures not only define how data is organized but also handle conflict
resolution. and they cover all popular  
use cases:

 • – Keeps data as a key-value storage.

 ◦ If your app heavily relies on maps, you may want to check out  
 which works the same but provides better optimization.

 • – Keeps data as an array list.

 • – Data structure optimized for text and rich text.

 • – Structures enabling  
 multi-user real-time collaboration on XML-structured data.

Since our to-do app relies primarily on maps, we’ll use . To create  
a new map in (or get an existing one), we use the
function. So, let's create the document with proper maps (we only need  
to synchronize and , as doesn't need  
to be synchronized):

There are six of them available

YKeyValue

9

https://docs.yjs.dev/api/shared-types
https://github.com/yjs/y-utility#ykeyvalue

However, creating itself only gives us state management. We still  
need connectivity between users. We’ll add it by instantiating the

 with the address of our Yjs WebSocket server:

Y.Doc

WebSocketProvider

The last line adds a simple logging mechanism, so we can track  
the connection status.

Notice that we define all of these outside of the React hook. That's because
Yjs isn't a React solution and if not needed, we shouldn't keep it in React's
lifecycle.

Synchronizing Yjs state to local state

Since Yjs isn't a React library, we need to write our own bindings. This
involves handling two cases—reacting to changes in Yjs and sending
changes to Yjs. Let's focus on the first one.

Each shared type implements an observer pattern by providing an
function (along with). This allows us to define a callback that
triggers whenever the data changes. To make things simple, we can tap into
the existing . State can be easily accessed by converting the
shared type with the function. In the case of , it will return  
a plain JavaScript object.

observe
unobserve

useState
toJSON() Y.Map

10

As it has to be done before rendering anything, we should create  
a without a dependency array for registering observers:useEffect

You might have noticed that we invoked functions despite setting them

to observe. That's because they only trigger when Yjs gets new data,

and we'd rather have an initial state. You also need to remember about
unobserving in the effect's destructor to prevent memory leaks.

11

Synchronizing local changes to Yjs

At this point, our local state is in sync with what's happening in Yjs. However,
when a user interacts with the to-do list, they're not just modifying Yjs—
they're also updating the local state. Let's break down how we handle this
with two examples.

 has a function. As expected, this function sets a
value to a given key. Since our example relies solely on maps, that's the only
thing that we’ll need to use.

First, let's check the function, which adds a new to-do item  
to the state. Currently, it recreates objects in the state with an added  
new key-value pair:

Y.Map set(key, value)

addNew

12

In Yjs, there's no need to create a new map—we can simply set the new
value. This way, the code gets simplified to:

Another scenario involves updating a specific value in an object. Since our
to-do items are JavaScript objects, we can independently set the title and
description. For example, updating the title currently looks like this:

13

In Yjs, we'll do it this way:

As you can see, we're recreating the object within the key-value pair.

That's done so that Yjs is aware that there was a value change. It's aware

of changes only on the level of shared types, but not deeper in them.

Following this same approach, you can update other functions as well,

such as modifying the description or reordering items in the list.

Yjs awareness

In addition to shared types, Yjs providers use another mechanism for sharing
changes:

Yjs Awareness is used to share user state between all connected clients. By
user state, we mean data that shouldn't be subject to conflict resolution, can
only be edited by a single client at a time, and everyone should be aware of.
A common example is cursor position, but Yjs Awareness can also be used in
other situations.
 

Yjs Awareness.

14

https://docs.yjs.dev/api/about-awareness

Since Yjs Awareness is a part of the Yjs provider, we can find it in our
, not in :WebsocketProvider Y.Doc

So, what can we do with it in our to-do app? For example, we have a local
state that tracks what the user is editing. Why not share this information  
so all clients can see what each user is working on? This can be easily done
in the following way:

15

As you can see, Yjs Awareness also implements the observer pattern, but  
the usage is a bit different than Y.Map. Instead of using , we add  
an event listener with . In the observer, we iterate over each Yjs
Awareness entry and copy them to our local state—excluding our own entry
by checking the client ID.

Yjs Awareness itself is also a map, where client IDs are the keys, and the
associated values can be anything. Now, it’s up to you to leverage this
information in the UI. For example, you could highlight or change the color

of the to-do item currently being edited by another user.

observe()
on()

Summary of changes: Adding multi-user real-time
collaboration

Adding multi-user real-time collaboration to our to-do app wasn't a hard task.
We kept most of the original code intact and simply added some extra things
to ensure integration with Yjs.

You can find the complete example here: 

If you prefer, you can view only the diff of changes here:  

https://github.com/synergycodes/yjs-example-react-todo-app.

https://github.com/synergycodes/yjs-example-react-todo-app/compare/
initial-app...main.

16

https://github.com/synergycodes/yjs-example-react-todo-app
https://github.com/synergycodes/yjs-example-react-todo-app/compare/initial-app...main
https://github.com/synergycodes/yjs-example-react-todo-app/compare/initial-app...main

Here’s a quick rundown of what we did

 Added Yjs to the project
 Set up the Yjs WebSocket server and Yjs WebSocket provider
 Created maps in Yjs for keeping items and order: and

 Added hooks with observers:

 ◦ For and copying their data to local state.

 ◦ For Yjs Awareness to synchronize who's editing what
 Modified callbacks to use Yjs instead of local state:

 (only Yjs Awareness),
 (reordering)

 To show Yjs Awareness data in the UI, we've added coloring of to-do
items based on the user ID.

itemsMap
orderMap

useEffect
 itemsMap orderMap

addNew,
handleItemEdit updateTitle,
updateDescription, handleDragEnd

Remember, the to-do app is one of the simplest types of apps, so adding
multi-user real-time collaboration to it wasn’t particularly challenging. As app
complexity increases, so will the complexity of working with Yjs. However,
these basic steps are the foundation you’ll work with most often when
implementing multi-user real-time collaboration.

How to set up a React Flow app
with Yjs

While to-do list apps are nice and simple, many of us don’t spend our
professional lives working on them. Instead, we often dive into more complex
projects. Let's explore how you can integrate Yjs with React Flow to build
collaborative diagramming apps.

17

High-level overview before building a collaborative
diagramming app

The basics remain the same: You’ll need Yjs, a connection provider,  
and . What differs is the content and usage.

Here's a high-level overview of what needs to be done
 We need to instantiate Yjs connection provider and
 Inside we need to keep two instances (or)—one

for the nodes and the other for the edges
 We need to write a React code to synchronize the Yjs state with

ReactFlow.

 ◦ It's very similar to using
 ◦ We need to have:

 ▪ Reactive and state variables (as arrays).

 ▪ and functions to synchronize  
 ReactFlow changes with the state.

Y.Doc

Y.Doc
Y.Doc Y.Map YKeyValue

nodes edges
onNodesChange onEdgesChange

ReactFlow with Zustand.

Additionally, you may want to synchronize cursor positions via Yjs
Awareness, but for now, let's focus on getting the basics set up.

Synchronizing Yjs with React Flow when building  
a collaborative diagramming app

In React Flow, we operate on two important arrays in the state: nodes and
edges, which together represent the entire graph. However, in Yjs, we won't
keep it this way. Instead, a better structure for Yjs is a key-value map,

as it allows for precise edits—a crucial factor for conflict resolution.
Fortunately, our nodes and edges already have unique IDs, so there’s

nothing stopping us from doing it this way.

18

https://reactflow.dev/learn/advanced-use/state-management

Observing both structures is straightforward and works the same way  
as in our to-do list example. Things get interesting in updating Yjs, because
React Flow requires us to implement and
functions. These functions send specific changes along with their type,
which is great for targeted updates but also introduces some complexity.

For example, when writing , we could write a code like this  
to handle different changes in Yjs:

onNodesChange onEdgesChange

onEdgesChange

19

The first case handles adding or replacing the edge, which  
is a straightforward use of the function. The second case deals  
with removing the edge.

Of course, this sample code isn’t a complete solution—there’s still more work
to do. You’ll need to handle node changes, and it would be nice to have user
cursors as well.

set()

20

Thankfully, with what we’ve covered so far, implementing these features
should be straightforward. However, if you’re looking for a full working demo,
React Flow Pro comes with an example of using React Flow with Yjs.

React Flow Pro example for collaborative
diagramming

The React Flow Pro example is a great starting point for building multi-user
real-time collaboration apps with React Flow and Yjs. While it’s a solid
foundation for collaborative diagramming, there are areas where things could
be optimized or handled differently.

Here’s how our approach differs
 We keep cursor states in Yjs Awareness instead of
 We don't share fields like or via Yjs.

 ◦ The React Flow Pro example shares the whole state, but we prefer  
 not to have all users share the same selection.

 ◦ Instead, we use Yjs Awareness to indicate when another user has selected  
 a node.

 ◦ Some implementation details: 
 - We keep non-synchronized values in a local state. 
 - In and , we separate which  
 changes should be stored in Yjs and which should remain local. 
 - When synchronizing Yjs state with React Flow, we merge local values. 
 - Local state (or relevant parts of it) is sent separately via Yjs  
 Awareness.

Consider these differences when moving the code into your own app.  
It's also worth noting that Yjs includes built-in undo/redo functionality, which
is not a part of this implementation—but could be a valuable addition.

Y.Map
selected dragging

onNodesChange onEdgesChange

21

https://reactflow.dev/examples/interaction/collaborative
https://reactflow.dev/examples/interaction/collaborative

22

The architectural challenges  
of multi-user real-time
collaboration apps

From the example we just explored, Yjs might seem like just another state
management library. Aside from running an additional server, there were

no major changes to the technical stack. That’s the beauty of Yjs: it’s that
simple! But bear in mind that this was a very basic use case—in real-world
applications, things get more complex.

When working with Yjs—or multi-user real-time collaboration apps,

in general—we typically face three implementation scenarios

 New projects – When starting from scratch, we can design the entire
software project properly with multi-user real-time collaboration in mind.
This gives us full control, but it also requires a deep understanding of Yjs’
capabilities and limitations

 Adding a multi-user editor to an existing app – Adding a new part  
to an existing software project means working within an established
architecture. This introduces integration challenges, requiring careful
planning to ensure compatibility of the multi-user editor with the rest  
of the system

 Adding multi-user real-time collaboration to an existing editor  
– The most complex scenario is adding multi-user real-time collaboration 
to an existing editor. Here, we must ensure that Yjs doesn’t interfere with
established functionality. Simply swapping out existing state management
or saving function for Yjs’ synchronization won’t work in most cases.

23

Yjs operates differently from typical client-server or request-response
solutions. To use Yjs effectively, we need to understand it on multiple levels.
Let me guide you through the most common problems we've encountered
and how to tackle them.

Communication model of Yjs

Distributed computing architectures

When working with apps that have a backend, we’re dealing with  
distributed computing. While we often associate "distributed systems" with
massive infrastructures like Facebook’s multi-data-center setup, even having
a separate client and server qualifies.

In distributed computing, two key architectures define the communication
model

 Client-server – Client apps communicate with a server to fetch or save
data. The server acts as the authority, managing data, access roles,  
and permissions. Clients depend on the server to function, making 
it the backbone of the system.

Client

Server

Client

Client Client

Client

Client

Client

The client-server model

24

Client

Client

Client Client

Client

Client

Client

 Peer-to-peer (Client-Client) – Client apps contact each other directly  
to share data. There's no central unit; every participant is both a client
and a server. This model enables full data transparency—every user has
read/write access to the same data.

As you might expect, the client-server model is the most common in modern
applications. Multiple users connect to the backend to store and retrieve
data. But how does Yjs fit into this picture? Can it work within a client-server
setup? Let’s dive deeper.

Communication in Yjs

Yjs itself doesn't provide communication protocols. On its own, Yjs functions
as a state management solution. To enable communication between clients,
you need to use Yjs providers. The key point to understand here is that,  
no matter which protocol these providers use, Yjs enforces a specific
communication model internally. For example, in our earlier scenario, we used
Y-websocket, one of the official providers to enable communication.

The peer-to-peer

(client-client) model

25

The Yjs communication model implies that all clients should have
synchronized, identical states. Communication protocols only exchange  
the changes that have occurred. All computations are done locally on client
machines. In practice, this means we should consider Yjs as a peer-to-peer
solution, regardless of the communication protocol being used. Even if there
is a central server that all clients connect to, if it uses Yjs, it behaves just like
any other client.

Yjs tries to make state copies across all clients equal by sending changes  
as they happen and synchronizing the clocks. By "clocks," we don’t mean
real-world wall clocks. Instead, Yjs uses Lamport timestamps, which  
are logical clocks that track how many operations have been performed.  
In distributed systems, relying on real-world clocks can be tricky since,  
in most cases, we can’t guarantee proper synchronization.

So, how is it possible for all computations to happen on the client-side and
for all clients to have the same state? It all comes down to the CRDT magic
and its deterministic nature. As long as the data is the same, it will always
compute the same state. Even if a client goes offline for a while, when  
it reconnects, it will receive all the changes and merge them without losing  
its work if it doesn't interfere with what has already been done. This  
is possible because everyone gets information about all the changes.  
This means we mustn't interfere with how and what data is synchronized.

Integrating Yjs into a distributed system

As mentioned earlier, Yjs itself doesn’t implement any communication
protocols—it relies on providers. This means that we can have both  
peer-to-peer and client-server connectivity (though, the server still acts 
as a client).

26

Client-server

In a client-server setup, there’s a central server to which every client
connects. The server holds its own Yjs state, synchronized with the data sent
by the clients, and propagates all these changes. This kind of architecture
gives us full control over communication. For example

 We can add authorization
 We have full control over what is persisted into the database,  

as the server should always have the ultimate copy of the state
 We can also prepopulate Yjs' documents with existing data.

Since each client connects to a single server, the performance on the client
side isn't determined by the number of users editing the same document
simultaneously. However, having a central server in the architecture means
that it has to be performant, and that over time we will need  
to scale—something we'll dive into later.

What about protocols? WebSockets are the industry standard for real-time
synchronization and are the most popular and recommended option for Yjs.
However, thanks to how Yjs works, theoretically, we should be able to use
other techniques that enable real-time client-server communication,
including older HTTP solutions like short-polling or long-polling.

Peer-to-peer

Since Yjs works in a peer-to-peer manner, this means that we can use peer-
to-peer communication protocols in real-time collaboration apps, which even
sounds more natural. Yjs has official providers for WebRTC (y-webrtc) and
DAT (y-dat) protocols, but others are possible too.

27

In this setup, Yjs providers connect clients with each other, and no single
client takes on the role of a central server. While this offers a more
decentralized approach, it also means we don't have the same degree  
of control as with client-server implementations. Performance on the client
side may be negatively affected, especially when many users are editing  
the same document at the same time.

Peer-to-peer doesn’t mean no server at all. You'll actually need  
one—a signaling server, so clients know with whom they can connect.
Additionally, you’ll need to think about how to handle document persistence,
since all users are equal. In some cases, you might still need one client with  
a bit more power in the system.

While peer-to-peer connectivity removes the complexity regarding server
scaling, it brings its own set of challenges—especially when developing
production-grade multi-user real-time collaboration apps. While we like  
the idea of delegating connectivity to users and keeping everything  
peer-to-peer, we typically recommend the client-server model for most
applications, including those focused on collaborative diagramming.

Yjs via WebSocket

For production, using Yjs with WebSocket providers is the most common  
mix in multi-user real-time collaboration software. Let’s take a look at some
of the top options available:

 • – A simple, barebone solution provided by the Yjs  
 developers. I wouldn’t recommend using it directly in production due  
 to its simplicity, but it can work as a base for custom production-grade 
 providers. At Synergy Codes, we have experience modifying y-websocket  
 to integrate it into larger systems, including real-time collaboration  
 projects, but due to the extra work needed, we typically prefer exploring  
 other options first.

y-websocket

https://docs.yjs.dev/ecosystem/connection-provider/y-websocket

28

 – A production-grade Yjs provider developed by the authors
of the TipTap text editor. It's highly extensible, allowing you to tap into  
the entire connection lifecycle with hooks, and it comes with ready-made
extensions for popular use cases, such as data persistence in various
databases. We recommend it as a go-to solution for a Yjs server

 – Very performant (written in Rust), but it doesn't offer much
freedom for customization. That said, it’s still a solid production-grade
solution for multi-user real-time collaboration software, and what sets  
it apart is its that makes working with Yjs much easier.

There are other options available, both self-hosted and cloud-based,  
but after working with these three, we feel confident in recommending them
for most use cases.

Hocuspocus

Y-Sweet

 great debugger

Scaling Yjs WebSocket servers

Let’s assume we’ve decided to use Yjs with one of the WebSocket providers.
As we scale our application for production, we need to plan ahead, knowing
that at some point, we may need to increase computational power to handle
the load. Scaling can be complex, and when it comes to multi-user real-time
collaboration, there are additional challenges that traditional architectures
don’t face.

Basics of scaling

When talking about scaling, we typically have two methods in mind

 Vertical scaling – Increasing the memory and computational power  
of a single machine (server)

 Horizontal scaling – Increasing the number of machines (servers).

https://tiptap.dev/docs/hocuspocus/introduction
https://jamsocket.com/y-sweet
https://y-sweet.cloud/advanced/debugger

29

While vertical scaling is relatively straightforward, we’ll focus here  
on horizontal scaling.

In traditional architectures, horizontal scaling is simple because HTTP  
is stateless by design. This means we can run multiple instances of the same
service, and no matter which server a client connects to, they should always
receive the same data.

However, when multiple users are editing the same document at the same
time, they can’t be freely assigned to any server, because this could lead  
to conflicts. As I mentioned earlier, Yjs works when all clients have the
identical set of changes, so Yjs CRDT can equalize client states. This means
we have to approach scaling a Yjs WebSocket server differently.

Do you need to scale Yjs?

Before diving into scaling, it’s important to ask yourself: Do you actually need
to scale Yjs?

Yjs, , is highly performant. Benchmarks, such as those
from , show that Yjs performs a lot of operations quickly  
on a mid-range consumer-grade machine. It doesn’t consume a lot  
of memory either. As highlighted in the linked blog post discussing CRDTs  
for multi-user editing:

 "At 30 characters per minute, a human would need 1.65 years of non-stop  
 writing to produce 26 million operations. (…) Yjs comfortably handles  
 26 million changes using only 220 MB of memory."

 according to its author
crdt-benchmark

https://blog.kevinjahns.de/are-crdts-suitable-for-shared-editing/
https://github.com/dmonad/crdt-benchmarks

30

This is true for text editors. However, when it comes to more advanced  
multi-user real-time collaboration apps that synchronize more data—like
collaborative diagramming apps—memory can be consumed much faster.
That's because Yjs retains the entire document history to track changes
properly. And let’s not forget that real-world apps allow multi-user editing,
further impacting memory usage.

What we recommend is starting with a single Yjs WebSocket server  
and monitoring its usage. If it starts consuming too many resources, then  
it might be time to think about scaling. I’ll cover two techniques, both  
of which don’t require significant changes to the front-end or the Yjs
WebSocket server itself. However, keep in mind that these techniques  
may pose different infrastructure challenges.

Approach #1: Session Backends

The first approach worth noting is called Session Backends.

Here, we assume that each document is always hosted on a single server.

All users editing that document (multi-user editing) will connect to the same
server. While there’s no limit to how many documents can be edited on one
server, the most common approach for multi-user real-time collaboration
software is to assign one server per document—hence the name "Session
Backends."

To make it work properly, we need an additional server that orchestrates
everything. Here’s how it functions

 Checks if the requested document is currently being edited
 If it isn't, it creates a new Yjs WebSocket server
 Then it provides the user with the address of the Yjs WebSocket server  

to connect to.

31

simplify the process. If you want to self-host, try using . Alternatively,  
if you prefer a cloud service, offers the same functionality 
—it's Plane as a service. The best part? On the Yjs WebSocket server side,
you don’t need to write any additional code to make it work. You’ll only need
to add some extra front-end code.

Plane
JamSocket

Approach #2: Redis-based

Another popular approach for scaling Yjs WebSocket servers is to use  
a common interface for synchronizing data between them—Redis is most
commonly used for this purpose.

In this approach, we don't need to treat Yjs WebSocket servers as different
entities from usual HTTP servers. They can be multiplied and load-balanced
the same way. It doesn't matter which server a client connects to. However,
to make it work, we need a way for all the servers to communicate with  
each other, and maintain a consistent Yjs state. That's where Redis comes
into play.

The overview of Session Backends architecture

Client

Server

Startup

Client

Client

WS Server

WS Server

WS ServerWS Server

WS Server

https://plane.dev/
https://jamsocket.com/

32

Redis is a fast in-memory database solution that has become an industry
standard for caches, key-value storage, and even for simple message
queues. It’s used as a persistence layer to transmit Yjs changes between
servers as if they were connected to each other directly. Of course, we could
connect them directly, as Yjs works in a peer-to-peer manner, but we should
assume that servers don't know about each other—hence the additional layer
for communication between servers.

The good news is this approach doesn't require a lot of additional setup,  
and can easily be integrated with real-time collaboration systems.  
All we need is a Redis instance that all the servers can connect to.  
And since the communication happens entirely on the server side,  
no changes are necessary on the front-end side. Fortunately,

, and it’s very
simple to configure.

 Hocuspocus
provides a built-in solution for Redis-based synchronization

Client

Redis

Client

Client

WS Server WS Server WS Server

WS Server WS Server

The overview of Redis-based architecture

https://tiptap.dev/docs/hocuspocus/server/extensions#redis
https://tiptap.dev/docs/hocuspocus/server/extensions#redis

33

Comparison of approaches

Let’s compare both approaches so you can decide which one best fits your
needs

 Infrastructure configuration

 ◦ Session backends require a separate, dedicated infrastructure.
However, if your app is cloud-first, and you don’t mind using an additional
provider, or you’re working on a new project, this approach might be a good
option.

 ◦ If you already have an established infrastructure—especially one with  
 load balancing in place—then the Redis-based approach might be a  
 better fit as it only requires adding a Redis instance.

 ◦ The choice here depends on how much flexibility you have to modify  
 your existing architecture and which approach better aligns with your  
 needs in the long run, considering other advantages and 
 disadvantages
 Resource usage

 ◦ In the Session Backends approach, there's always one server per  
 document, meaning all computations happen on that single server.  
 This can help save resources in a real-time collaboration scenario,  
 but keep in mind that spinning up a new server also consumes some  
 resources

 ◦ Because Yjs performs every computation on every client, it means  
 that with the Redis-based approach, we will need to repeat all  
 computations on each server. However, the number of connections  
 is minimized to one server. Because each server can serve multiple  
 documents, it may lead to high resource usage in corner cases

 ◦ Here, you need to leverage how your app is used. If your app deals with  
 multiple large documents, Session Backends may be the better option.  
 However, if you’re working with smaller documents and don’t need  
 a dedicated backend for each one, Redis-based synchronization  
 should be sufficient.

34

 Geo load balancing

 ◦ Session Backends have a limitation when it comes to load balancing  
 based on user location. Even if you deploy servers across different  
 cloud regions, it will always be tied to the first user who connects.  
 For example, if a user in the U.S. starts editing, users from Europe  
 will be connected to that same U.S. server. That's because of the  
 restriction that one document can be edited only on one server.

 ◦ Redis-based scaling is better in this case because multiple servers  
 can handle a single document, meaning that clients in the U.S. connect  
 to a Yjs WebSocket server in their region, and European clients connect  
 to a Yjs WebSocket server in Europe. Of course, there may still be some  
 delay due to server-to-server synchronization, but the biggest factor  
 affecting user experience is the client-server delay,  
 not server-to-server communication.

 ◦ If geo load balancing is a priority, the Redis-based approach is the only  
 option that fully supports it. But it’s worth considering whether this  
 is a critical need for your application.

Which approach is better? There’s no one-size-fits-all answer. Both Session
Backends and Redis-based scaling have their strengths and trade-offs.  
I encourage you to read more about both options and decide what's best  
for your needs.

35

Organizing and persisting data

in Yjs

When building a multi-user real-time collaboration app with Yjs, another thing
to consider is how to organize and persist data.

Why is this a challenge?

As we’ve seen in a live example, Yjs keeps data in a structure called .
That's the place where we store more specialized structures like ,

, or on which Yjs CRDT is performed.

The challenge, however, is that the data in Yjs doesn't need to represent  
the whole data model that needs to be persisted in a multi-user real-time
collaboration. It doesn't need to be the same business or logical model  
as other APIs in the system. In fact, it even shouldn't have the complete
dataset. Yjs should only store data that's affected by multi-user real-time
collaboration and can be accessed by every collaborating part.

It's worth noting because the Yjs WebSocket server, despite being  
a backend, doesn't necessarily need to be a full backend service—nor should
it be for real-time collaboration software. Instead, think of it as 
a microservice whose only job is to facilitate data exchange in a multi-user
collaborative environment. This is especially important when implementing
scaling methods like Session Backends, where keeping the server lean  
and minimal is a priority. But if the server is so minimal, where should  
we store Yjs data to ensure system-wide data consistency?

Y.Doc
Y.Text

Y.Array Y.Map

36

So, we've just covered organizing data, but that’s not all—the data itself
presents another challenge. Yjs organizes data in a series of structs, which
differs from how data is typically stored or accessed. Additionally, all state
updates in Yjs are binary encoded. While this isn’t necessarily a problem,  
it does mean that you need Yjs itself to decode and merge updates into  
the rest of the doc. This raises an important question: what data should  
be stored outside Yjs?

Furthermore, multi-user real-time collaboration generates lots of changes,
and there isn't exactly something like a save button. This leads to another
crucial question: how often should we store data outside of Yjs?

Where to store?

Now that we’ve tackled the basic challenges, let’s move on to the next big
question: where to store? Honestly, the options are fairly straightforward,

and the choice depends on what kind of data you decide to store.

The first option is to store data directly in a database of your choice.
Hocuspocus provides that allows you to store and fetch data
from any database. You simply configure two functions: one for storing  
the data, and one for retrieving the data. This flexibility means you can  
use any DB driver you like. If you prefer SQLite, Hocuspocus even 

.

Another option is file storage, such as S3. This is the only persistence
method available in Y-Sweet, but it’s also possible with Hocuspocus using  
the same database extension (after all, it's just another database).  
S3 can be an attractive option because Yjs data is, by default, binary
encoded into a single blob, so file storage seems more natural. Running  
cost calculations beforehand is a good idea to determine the best fit  
for your needs.
 

 an extension

offers a dedicated extension for it

https://tiptap.dev/docs/hocuspocus/server/extensions#database
https://tiptap.dev/docs/hocuspocus/server/extensions#sq-lite

37

The last option is to use another backend for persistence. When working  
with Hocuspocus, the database extension doesn’t actually require you to use
a traditional database—you can store data via any API instead. From  
a technical perspective, storing data via an API is no different from storing  
it in a database (since databases are typically accessed through APIs
anyway). However, from a logical and business standpoint, there  
is a difference. If you go this route, Hocuspocus provides another useful
feature: , allowing you to configure webhooks instead  
of API calls in the database extension.

webhook extension

What to store?

Time to jump into the topic of what the Yjs WebSocket server should store  
in the DB, S3, or API. There are multiple approaches, each with its own  
trade-offs.

Yjs state updates stored in MongoDB

https://tiptap.dev/docs/hocuspocus/server/extensions#webhook

38

The simplest and most straightforward option is to store a copy of the Yjs
state. This can be done in two ways

 We can encode the entire Yjs state into a single state update. That's what
Hocuspocus does in its database extension. Under the hood, it's a result
of calling Yjs' function . This approach results  
in a single binary blob—easy to read and write but lacking edit history

 We can save each entry separately. That's the approach used by official
Yjs database providers and Y-Sweet. Instead of storing the document  
as one blob, each update is saved individually, as presented in the
screenshot above (stored in MongoDB). It allows access to historical
changes but makes the structure harder to read.

 ◦ Important Consideration: ‘History’ literally means every single change,  
 and it may grow really quickly. If you choose this method, consider  
 limiting history storage to 100-200 updates, compacting older changes  
 into an initial state.

While these methods are fast and easy to implement, they come with  
a drawback—the data is unreadable without Yjs. Although you can use Yjs
anywhere (even offline) to decode the data, it may not always be an option  
in existing systems.
 

The second method is to decode the Yjs state and store it as plain  
data types

 We can just call on specific Yjs' data structures and store the
result directly in any database

 Or, after calling , we may map the data on the Yjs WebSocket
server level to the proper form.

This method requires more work and may be slower, but it provides more
flexibility for existing systems. However, when fetching data to recreate  
a Y.Doc, you must properly reconstruct all Yjs' data structures, as the
information about them is lost.

encodeStateAsUpdate

toJSON()

toJSON()

39

How often?

When it comes to persisting Yjs data in a multi-user real-time collaboration
software, timing is critical. The environment is highly dynamic, and even  
one user can make multiple changes per second.

With traditional applications, this is usually not an issue. Many systems rely
on a Save button or debounce/throttle mechanisms for auto-saving. Changes
are either batched and saved periodically, or saved when the user explicitly
submits them.

Here, you should think of Yjs as your main state management solution,  
not just some communication layer.

In a multi-user real-time collaboration environment, things get more
complicated. Why? First of all, debouncing or throttling changes is not  
a viable option. Users need to see changes in real-time without waiting  
for delayed updates. Also, it can introduce consistency issues and potentially
lead to conflicts—which may not always resolve in the way the user expects
(we'll explore this in more detail later).

Auto-save on change submit would also be tricky. Since in multi-user editing,
changes must be synchronized in real-time, saving only part of the data
could create problems. For example, if one user finishes their edits,  
but another is still actively working, should we wait until everyone finishes
before saving?

40

To summarize, I've seen two approaches in Yjs providers

 Yjs WebSocket server saves all changes – Every change made by users  
is persisted immediately in the order that the server receives them.  
That's what I've seen in official database providers

 Save is debounced or throttled – This is the approach used  
by Hocuspocus, where data is persisted by default with a 2-second
debounce and a 10-second throttle. The server waits for 2 seconds  
after the last change before saving. However, to ensure that data is not
left behind, the server also saves the state every 10 seconds, regardless
of whether there have been changes.

For most databases and storage systems, the debounce/throttle method  
is generally more cost-effective. It minimizes storage usage. However, it does
mean that data outside Yjs will always be slightly outdated. This might not  
be suitable for every system, especially if the backend needs instant access
to modified data.

Thinking in Yjs vs. client-server
thinking

As I mentioned earlier, Yjs operates on a peer-to-peer communication model.
This means that even in a client-server architecture, the server is essentially
just another client. This can create some unique challenges if you're not
familiar with how Yjs works. You might be surprised to hear that "Yjs can't  
do this," but in reality, it's not that it can't—it's just that it works differently.
Understanding how Yjs operates, and how to implement real-time
collaboration using Yjs, can help you achieve the results you need.

41

Key differences between client-server thinking

and Yjs

Let’s walk through some of the major differences between typical client-
server logic and how Yjs works

 Server can validate data and return an error

 ◦ In Yjs, there's no validation. The server is just another client, or you can  
 think of it as a communication bus between the clients. Every change is  
 saved in the Y.Doc and automatically propagated to all other clients
 Server can decide what to save

 ◦ In Yjs, to maintain consistency between all clients, every client needs to  
 have the same update history. That means the server can't reject  
 updates—doing so would create an inconsistency, making the Yjs  
 CRDT non-deterministic
 Server can modify data before saving

 ◦ When receiving a change from a client, the server shouldn't modify  
 it before propagating it to other clients for the same reasons as above.  
 However, since the server is just another client, it can create a new  
 change that modifies the value. The original value, though, will still  
 be accessible in the history for all clients
 Server can provide sophisticated authorization and access roles  

on a specific resource level

 ◦ Since everyone connected to the particular Yjs document receives  
 all updates, authorization is more limited. You can only control access  
 at the document level, meaning that everyone can see everything  
 within the document. However, you can implement read-only access  
 for specific clients if needed
 Client synchronizes to what the server has

 ◦ In Yjs, communication is peer-to-peer. The server is just another client,  
 so the server actually synchronizes to the state that the clients have
 Client-state vs. server-state

 ◦ When working with Yjs, you should always think of it as a client state,  
 as using Yjs is more similar to how one uses Redux than TanStack  
 Query.

42

Let's expand on these differences to better understand how to effectively
work with Yjs when building multi-user real-time collaboration software.

How to work with Yjs when building a multi-user
real-time collaboration app?

While this article provides an overview, I can't possibly cover every detailed
case you might encounter when working with Yjs. However, besides
discussing the potential challenges, I’d like to offer some valuable advice

 Learn how exactly Yjs works: While official Yjs documentation isn't very
wordy at the time of writing this article, there are plenty of other
resources out there. I've already mentioned that describes
CRDTs in a more scientific way. The is a great place to see
what kinds of issues other developers are facing and how they’re solving
them. If you want to dive even deeper, I recommend reading the

 Understand the limitations of Yjs: It's important to understand how Yjs
CRDT works and how data is synchronized. But it’s even more crucial  
to grasp Yjs limitations from a business perspective

 Educate other developers in your project: Once you’ve familiarized
yourself with Yjs, don’t keep the knowledge to yourself. Educate your
fellow developers—especially those on your project, who are building
multi-user real-time collaboration software with you. It can be tough  
to break out of the traditional client-server mindset (since many of us are
used to that model), but it’s entirely possible to shift your team’s approach
with the right guidance

 Avoid hacking Yjs: One of the biggest risks when learning Yjs is the
temptation to hack it to fit the way you want it to work. This is a
dangerous path, as it could lead to non-deterministic state resolution.
Instead of trying to force Yjs into your preconceived solutions, take the
time to understand its design and work with it in the way it was intended
to be used.

 CRDT.tech
Yjs Community

Yjs
Internals document

https://crdt.tech/
https://discuss.yjs.dev/
https://github.com/yjs/yjs/blob/main/INTERNALS.md
https://github.com/yjs/yjs/blob/main/INTERNALS.md

43

 Assess if Yjs is right for your project: Sometimes you need to have  
the courage to say: “Yjs isn't for us.” If your requirements are highly
specific, investing time in building a custom solution might be a better
option than trying to hack a ready-made one.

Despite the last point, let’s not get discouraged. Stick with me—there’s still
more to uncover in the Yjs world!

Conflict resolution in Yjs CRDT

One of the most important aspects to understand when working with Yjs  
is how conflict resolution works within the Yjs CRDT framework. While it may
not always seem critical for developers, especially since things "just work"  
on the technical side, this knowledge is essential from a business
perspective.

How conflict resolution works in Yjs CRDT?

I won’t dive into all the nitty-gritty algorithmic details of conflict resolution  
in Yjs CRDT, but let’s walk through a high-level overview.

When a client makes a change, it communicates that change to other  
clients by sending information about the change itself (insert or remove;
modification is a combination of both) along with a Lamport timestamp.  
It consists of the operation number and the client ID. In a perfect world, every
operation would have a unique and sequential number (like 1, 2, 3, etc.).

However, in distributed systems, operations can arrive out of order,  
and sometimes two operations might have the same number because  
the system clocks weren’t perfectly synchronized. This can create conflicts.

44

As you probably remember, Yjs CRDT operates on the client level, and there's
no central server to decide the ultimate result of the state. That's why  
all computations have to be deterministic, ensuring that all clients  
end up with the same result from the same set of state updates.

When resolving conflicts, the first thing that Yjs looks at is the operation's
 and . This defines the user’s intention—for example,

whether a new letter in a document was added to the left or right of an
already existing character. In cases where two clients perform simultaneous
changes in the same spot, the origin helps Yjs CRDT resolve the conflict. If
the origins differ, Yjs can place both items in the correct spot, preserving the
intention behind each change.

But what if the origins are the same? Some might assume that the latest
change should win. However, this approach requires knowing the exact real
time (wall clock) of each client, which is most likely desynchronized. To avoid
this issue, Yjs adopts a simple yet effective heuristic: the client with the lower
ID wins. It may sound odd at first, but this is the easiest approach, and  
it ensures deterministic behavior without relying on uncertain factors like  
wall clock time.

origin originRight

Example of conflict solving in collaborative
diagramming apps

The conflict

Let’s dive into a real-world conflict scenario you might encounter while
building collaborative diagramming apps using ReactFlow with Yjs. In this
case, we aren’t dealing with simple inserting (like to the left or to the right),
but rather working with nodes and edges that are stored in structures like

 or . For simplicity’s sake, imagine that each Yjs structure
contains a plain JavaScript object with node or edge data.
Y.Map YKeyValue

45

Consider the following example. We have a node with three properties: color,
caption, and position. Three users simultaneously want to modify it: the first
changes the color, the second changes the caption, and the third moves  
the node to another place.

TEST

?
TEST

HALO

HALO

TEST

Client ID: 100

{

 color: “yellow” ,

 caption: “Test” ,

 position: [0, 20] ,

}

{

 color: “green” ,

 caption: “Halo” ,

 position: [20, 30] ,

}

{

 color: “green” ,

 caption: “Test” ,

 position: [0, 20] ,

}

{

 color: “yellow” ,

 caption: “Halo” ,

 position: [0, 20] ,

}

{

 color: “yellow” ,

 caption: “Test” ,

 position: [20, 30] ,

}

Client ID: 20

Client ID: 3700

TEST

{

 color: “yellow” ,

 caption: “Test” ,

 position: [20, 30] ,

}

TEST

TEST

HALO

HALO HALO

Client ID: 100

{

 color: “yellow” ,

 caption: “Test” ,

 position: [0, 20] ,

}

{

 color: “green” ,

 caption: “Halo” ,

 position: [20, 30] ,

}

{

 color: “green” ,

 caption: “Test” ,

 position: [0, 20] ,

}

{

 color: “yellow” ,

 caption: “Halo” ,

 position: [0, 20] ,

}

{

 color: “yellow” ,

 caption: “Halo” ,

 position: [0, 20] ,

}
Client ID: 20

Client ID: 3700

The common concurrency issue on diagrams. What will be the result
of conflict resolution? Will it be what we expect?
 

The conflict resolution done by Yjs

As common logic would suggest, these are three separate changes, so all  
of them should be performed. However, the result is the following:

46

What the ... ?

At first glance, it might seem completely illogical that only the caption change
was accepted. But let’s break it down by recalling two key points

 The client with the lowest ID wins (in this case, the client with ID 20 made
the caption change)

 stores plain JavaScript objects.

Yjs performs conflict resolution at the structure level. If we had a key-value
map of color, caption, and position, there would be no problem at all.
However, the node data itself is treated as a value. Yjs doesn't care what's
inside it, so in case of a simultaneous edit, it won't merge the object—it will
just replace it.
 

To prevent such cases, we have two potential solutions

 Lock diagram objects: When a user is editing a node or edge, we know
about it because they’ve selected it first. That's the perfect moment  
to lock editing of the object so other users can't make conflicting
changes. This works well in most use cases and is easy to implement,  
but it depends on having a synchronized state. If one user goes offline,  
it won’t work

 Keep Yjs structure instead of plain object: Instead of storing objects  
as they are defined in ReactFlow, we can store them as Yjs data
structures. However, this method introduces additional complexity,
requiring extra data conversion and could impact client-side performance
due to memory overhead.

Y.Map

47

Yjs integration into an existing
system

When integrating Yjs into an existing system, one of the biggest challenges  
is managing how it interacts with existing data, and how the rest of the
system can access the data we work on in a multi-user collaborative
environment.

So, let's start with accessing existing data. The question is: should this data
be stored within Yjs, or should it remain outside of it?

Here’s how to decide

 If you’re editing the data and need it to be synchronized in real-time  
in a multi-user collaborative environment, and don't need to return  
it to the original API, store it in Yjs

 If the data is extra context and doesn’t need to be synchronized  
in real-time, don't store it in Yjs

 If the data is only for a particular user and can't be accessed by others,
absolutely don't store it in Yjs

 If you're editing the data and need to save it in a REST right away, and  
at the same time, notify others about the change, it depends. I wouldn't
store the data in Yjs in this case, but you can use it to store the timestamp
that will force other users to refetch data from the API. However,  
it's better to use a dedicated notification solution and not pollute Yjs  
with such data.

One simple rule to follow: In Yjs, store only the data that: a) needs  
to be synchronized across all users, b) should be affected by Yjs' conflict
resolution, and c) everyone can access.

48

When it comes to accessing Yjs data externally, most of the cases were
covered in our discussion on persistence. However, in some situations,  
you might want to access the current state of the data as it is now, not the
possibly outdated copy. To do this, keep in mind that the Yjs WebSocket
server can have HTTP endpoints. If you're using Hocuspocus, you can easily
add an endpoint that returns the content of the document. For more specific
scenarios, like needing to react to certain events on the Yjs WebSocket
server, you may use a webhook extension.

Multi-document approach

A popular use-case for advanced apps is having the ability to edit multiple
documents simultaneously within a single view. If you're a developer, you’ve
likely experienced this in your IDE—editing two files side by side. If you’re
not, think of separate sheets in Excel or different pages in Figma. While these
may appear as independent documents, they often share data and interact  
in meaningful ways.

For example, imagine a collaborative diagramming app where you maintain  
a library of nodes. If a node’s metadata is modified in one diagram, that
change should reflect across all instances—just like Figma components  
or referencing data from another sheet in Excel.

https://tiptap.dev/docs/hocuspocus/server/extensions#webhook

49

So, how should you handle this? There are two main approaches, each with
its own pros and cons

 Keeping each subdocument as a separate Yjs document

 ◦ Every document utilizes a separate WebSocket connection

 It's possible to override the Yjs WebSocket provider to reuse the
connection, but it comes with drawbacks

 Handling multiple connections requires more front-end work  
to ensure that everything's handled correctly.

 ◦ They have separate change histories.

 ▪ However, a common undo-redo management is possible using  

 ◦ This approach allows lazy-loading and subdocument-level  
 authorization.

 ◦ Most probably, you'll need an additional document for shared data.

 ◦ Subdocuments can be kept in other documents  
 (see:), however, it may  
 not be supported by connection providers  
 (e.g. currently)
 Keeping everything in one Yjs document

 ◦ Only one WebSocket connection is utilized.

 ◦ Common change history.

 ◦ It's not possible to lazy-load data or do more precise authorization.

 ◦ The structure is much simpler and allows more flexibility.

At first glance, using separate documents may seem like the better solution,
but both are correct, and the right choice depends on your needs.  
It’s essentially a trade-off between simplicity and fine-grained control.
Choose wisely!

YMultiDocUndoManager.

https://docs.yjs.dev/api/subdocuments

Hocuspocus doesn't support it

https://github.com/yjs/y-utility?tab=readme-ov-file#ymultidocundomanager
https://docs.yjs.dev/api/subdocuments
https://github.com/ueberdosis/hocuspocus/issues/583

50

Using Yjs with front-end
frameworks

The last thing I’d like to discuss is how to use Yjs with front-end frameworks.
As you’ve seen earlier, Yjs data structures follow the observer design pattern,
meaning they notify us about every change—allowing full control over data
updates. There are two options for what we can do

 Use Yjs directly: Each component using Yjs creates its own observers.

 ◦ This is the approach demonstrated earlier in the React example.

 ◦ Despite using observers, to achieve reactivity, front-end frameworks  
 need to be explicitly notified about changes, which means copying  
 data from Yjs into the reactive local state—introducing extra complexity.

 ◦ Another layer of complexity is added on the developer’s end, as they  
 need to remember about proper garbage collection. Every time  
 a component is destroyed, you have to remember to unsubscribe from Yjs
 Use a global state management library as a middle layer: Instead  

of creating observers on the component level, you create one that
updates data in a store like Redux or Zustand.

 ◦ It's an additional layer, meaning higher memory usage. But remember  
 that in the previous case we also had to copy data from Yjs.

 ◦ It breaks the principle I've described before about using Yjs as a state  
 management solution. However, as long as you update everything  
 directly in Yjs and not manually in the middle layer, you’re fine.

 ◦ Responsibility for reactivity is moved completely to the state  
 management library. Their bindings offer optimized ways to notify  
 components about changes (like in React) that  
 don't require utilizing local state.

 ▪ Of course, you may try to use things like with Yjs.

 ◦ You need to remember about garbage collection only in the place  
 where you're syncing the store, not in every component.

useSyncExternalStore

useSyncExternalStore

https://react.dev/reference/react/useSyncExternalStore

51

I haven’t conducted formal benchmarks, but based on my experience, the
second approach (using a global state library) tends to perform better. But
don't quote me on that, I don't have hard proof to support it. A more fine-
grained integration with could potentially work even
better—something I haven’t personally tested yet.

useSyncExternalStore

Summary: Considering everything
—is Yjs even right for me?

Let's end this long journey through multi-user real-time collaboration
software with a simple, yet fundamental question: Is Yjs even the right  
choice for my collaborative diagramming project?

By now, you probably have an idea of where Yjs shines, where it adds
complexity, and where it might not be the best fit. But to wrap things up,  
let’s summarize the key considerations.

Comparison by functions

Throughout our journey, I tried to describe how Yjs works and what
limitations it poses, especially when we compare it to traditional client-server
solutions. Here’s a short summary

 Synchronization of simultaneous edits on the same document: That's
generally the main purpose of Yjs

 Server doesn't need to accept changes: For example, by performing  
a validation. That's something that Yjs can't do, as the state always gets
synchronized between all clients

 No custom rules for conflict resolution: If you don't need to interfere with
Yjs' default way of conflict resolution, it's perfectly fine for you. When you
need custom rules, maybe you need another solution.

52

 Simple authorization: If you don't need fine-grained control over access
to resources, Yjs will be enough. In Yjs, authorization can be done only  
on the entire document level, as every client needs to have all the
changes for proper state synchronization.

 ◦ Keep in mind that you can utilize multiple documents for more control  
 over access
 Full changes history: Yjs just provides it. But remember that everyone

who has access to the document also has access to all changes.

What I haven't written explicitly yet

 Real-time synchronization of components dependent on each other:  
As Yjs gives great conflict resolution, it's ideal for scenarios when edits
from one user impact another user’s workflow.

 ◦ However, when all components are independent of each other,  
 Yjs might be an overkill. Something simpler, without sophisticated  
 conflict resolution, may be enough
 Real-time synchronization all-to-all: As Yjs works in a peer-to-peer

manner, it’s perfect when everyone has the same editing permissions.

 ◦ When there's only one editor and the rest can stand by and watch  
 the changes; or more generally speaking—you're solely streaming  
 read-only data (e.g. readings from sensors), you might be better off  
 with a simpler solution. Conflict resolution and changes history  
 are not necessary in such use cases. Don't treat Yjs as a generic  
 real-time data provider.

Comparison by app type

While Yjs excels at handling multi-user real-time collaboration, not every app
benefits from its unique strengths. Let’s break it down by going through
examples of apps where Yjs is the perfect fit and where a simpler solution
might be better.

53

In general, Yjs is designed for collaborative document editing. Think of apps
like Google Docs, Notion, Miro, Figma*, Excalidraw. If your app is similar,  
Yjs is for you.

Yjs isn’t a one-size-fits-all solution. Here are examples when it’s not the best
choice

 Showing real-time data: e.g. stock quotes, live sports commentary.

 ◦ In such cases, there’s no need for conflict resolution—data is simply  
 broadcasted from the server to clients in real-time, which can  
 be achieved with simpler means.

 ◦ Bonus tip: If you need to provide in-app notifications, but you aren't  
 limited to having Yjs in your system, it's best to use a separate provider  
 for those notifications
 Real-time messaging: e.g. chats, comment systems, social media.

 ◦ Despite the fact that multiple users post simultaneously, in the same  
 system, basically in the same document, the reality is that providing  
 conflict resolution is not necessary. Again, simpler solutions  
 are available
 Multi-player games

 ◦ In games, you don't particularly need the history of changes, and since  
 everyone controls a different player, conflict resolution is also  
 unnecessary.

 ◦ In this case, it's also worth noting that it may be beneficial to give  
 a server more control over communication to prevent cheating.  
 As we learned, in Yjs, we can't modify the content of synchronized  
 data.

* Figma developers may disagree with me, as , but their own solution
inspired by CRDT and OT (Operational Transforms). However, it doesn't mean that it won't
work in your case. If you’re curious, I highly recommend reading Figma’s case study  
on their approach to multi-user real-time collaboration.

 they don't use CRDT

https://www.figma.com/blog/how-figmas-multiplayer-technology-works/

54

It’s a wrap!

Congratulations—you’ve made it to the end!

As you’ve seen, multi-user real-time collaboration is a vast and complex
topic. And believe me—we’ve only scratched the surface!

I hope this guide has given you a clearer understanding of multi-user real-
time collaboration, and Yjs, in particular—where it shines, where it has
limitations, and whether it’s the right fit for your project. With the insights
shared in this article, you're better equipped to create successful and  
high-performing collaborative diagramming apps. Next step is learning  
how to

And if you’d like to learn more about how diagrams can benefit your business,
don't hesitate to reach out to us at Synergy Codes. With our data
visualization expertise, we’re ready to support you in building multi-user  
real-time collaboration apps in ReactFlow using Yjs, bringing your vision  
to life with the assistance of our top-tier developers.
 

optimize your ReactFlow project performance.

https://www.synergycodes.com/blog/guide-to-optimize-react-flow-project-performance

	01
	React-Flow_Yjs-nocovers_compressed-1
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

	55

